

bioutils – bioinformatics utilities and lookup tables

bioutils provides common utilities and lookup tables for bioinformatics.

	bioutils.accessions – parse accessions, infer namespaces

	bioutils.assemblies – Human assembly information (from NCBI/GRCh)

	bioutils.cytobands – map cytobands to coordinates (from UCSC cytoband tables)

	bioutils.digests – implementations of various digests

	bioutils.normalize – allele normalization (left shuffle, right shuffle, expanded, vcf)

To use an E-Utilities API key run add it to an environment variable
called ncbi_api_key and it will be used in the E-Utilities request.

Contents:

	Reference
	Submodules

	Module contents

	License

	Authors

	Changelog
	0.4 Series

	0.5 Series

Indices and tables

	Index

	Module Index

	Search Page

bioutils package

Submodules

	bioutils.accessions module

	bioutils.assemblies module

	bioutils.coordinates module

	bioutils.cytobands module

	bioutils.digest module

	bioutils.digests module

	bioutils.exceptions module

	bioutils.normalize module

	bioutils.seqfetcher module

	bioutils.sequences module

	bioutils.vmc_digest module

Module contents

bioutils.accessions module

Simple routines to deal with accessions, identifiers, etc.

Biocommons terminology: an identifier is composed of a namespace and
an accession. The namespace is a string, composed of any character
other than colon (:). The accession is a string without character set
restriction. An accession is expected to be unique within the
namespace; there is no expectation of uniqueness of accessions across
namespaces.

Identifier := <Namespace, Accession>

Namespace := [^:]+

Accession := \w+

Some sample serializations of Identifiers:

json: {"namespace": "RefSeq", "accession": "NM_000551.3"}

xml: <Identifier namespace="RefSeq" accession="NM_000551.3"/>

string: "RefSeq:NM_000551.3"

The string form may be used as a CURIE, in which case the document in
which the CURIE is used must contain a map of {namespace : uri}.

	
bioutils.accessions.chr22XY(c)

	Reformats chromosome to be of the form Chr1, …, Chr22, ChrX, ChrY, etc.

	Parameters:

	c (str or int) – A chromosome.

	Returns:

	The reformatted chromosome.

	Return type:

	str

Examples

>>> chr22XY('1')
'chr1'

>>> chr22XY(1)
'chr1'

>>> chr22XY('chr1')
'chr1'

>>> chr22XY(23)
'chrX'

>>> chr22XY(24)
'chrY'

>>> chr22XY("X")
'chrX'

>>> chr22XY("23")
'chrX'

>>> chr22XY("M")
'chrM'

	
bioutils.accessions.coerce_namespace(ac)

	Prefixes accession with inferred namespace if not present.

Intended to be used to promote consistent and unambiguous accession identifiers.

	Parameters:

	ac (str) – The accession, with or without namespace prefixed.

	Returns:

	An identifier of the form “{namespace}:{acession}”

	Return type:

	str

	Raises:

	ValueError – if accession sytax does not match the syntax of any namespace.

Examples

>>> coerce_namespace("refseq:NM_01234.5")
'refseq:NM_01234.5'

>>> coerce_namespace("NM_01234.5")
'refseq:NM_01234.5'

>>> coerce_namespace("bogus:QQ_01234.5")
'bogus:QQ_01234.5'

>>> coerce_namespace("QQ_01234.5")
Traceback (most recent call last):
...
ValueError: Could not infer namespace for QQ_01234.5

	
bioutils.accessions.infer_namespace(ac)

	Infers a unique namespace from an accession, if one exists.

	Parameters:

	ac (str) – An accession, without the namespace prefix.

	Returns:

	
	The unique namespace corresponding to accession syntax, if only one is inferred.
	None if the accesssion sytax does not match any namespace.

	Return type:

	str or None

	Raises:

	BioutilsError – If multiple namespaces match the syntax of the accession.

Examples

>>> infer_namespace("ENST00000530893.6")
'ensembl'

>>> infer_namespace("NM_01234.5")
'refseq'

>>> infer_namespace("A2BC19")
'uniprot'

Disbled because Python 2 and 3 handles exceptions differently.

>>> infer_namespace("P12345")
Traceback (most recent call last):
...
bioutils.exceptions.BioutilsError: Multiple namespaces possible for P12345

>>> infer_namespace("BOGUS99") is None
True

	
bioutils.accessions.infer_namespaces(ac)

	Infers namespaces possible for a given accession, based on syntax.

	Parameters:

	ac (str) – An accession, without the namespace prefix.

	Returns:

	A list of namespaces matching the accession, possibly empty.

	Return type:

	list of str

Examples

>>> infer_namespaces("ENST00000530893.6")
['ensembl']

>>> infer_namespaces("ENST00000530893")
['ensembl']

>>> infer_namespaces("ENSQ00000530893")
[]

>>> infer_namespaces("NM_01234")
['refseq']

>>> infer_namespaces("NM_01234.5")
['refseq']

>>> infer_namespaces("NQ_01234.5")
[]

>>> infer_namespaces("A2BC19")
['uniprot']

>>> sorted(infer_namespaces("P12345"))
['insdc', 'uniprot']

>>> infer_namespaces("A0A022YWF9")
['uniprot']

	
bioutils.accessions.prepend_chr(chr)

	Prepends chromosome with ‘chr’ if not present.

Users are strongly discouraged from using this function. Adding a
‘chr’ prefix results in a name that is not consistent
with authoritative assembly records.

	Parameters:

	chr (str) – The chromosome.

	Returns:

	The chromosome with ‘chr’ prepended.

	Return type:

	str

Examples

>>> prepend_chr('22')
'chr22'

>>> prepend_chr('chr22')
'chr22'

	
bioutils.accessions.strip_chr(chr)

	Removes the ‘chr’ prefix if present.

	Parameters:

	chr (str) – The chromosome.

	Returns:

	The chromosome without a ‘chr’ prefix.

	Return type:

	str

Examples

>>> strip_chr('22')
'22'

>>> strip_chr('chr22')
'22'

bioutils.assemblies module

Creates dictionaries of genome assembly data as provided by

ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/All/*.assembly.txt

Assemblies are stored in json files with the package in
_data/assemblies/. Those files are built with sbin/assembly-to-json,
also in this package.

Definitions:

	accession ac: symbol used to refer to a sequence (e.g., NC_000001.10)

	name: human-label (e.g., ‘1’, ‘MT’, ‘HSCHR6_MHC_APD_CTG1’) that
refers to a sequence, unique within some domain (e.g., GRCh37.p10)

	chromosome (chr): subset of names that refer to chromosomes 1..22, X, Y, MT

	aliases: list of other names; uniqueness unknown

Note

Some users prefer using a ‘chr’ prefix for chromosomes and
some don’t. Some prefer upper case and others prefer lower. This
rift is unfortunate and creates unnecessary friction in sharing data.
You say TO-my-to and I say TO-mah-to doesn’t apply here. This code
favors using the authoritative names exactly as defined in the
assembly records. Users are encouraged to use sequence names
verbatim, without prefixes or case changes.

	
bioutils.assemblies.get_assemblies(names=[])

	Retrieves data from multiple assemblies.

If assemblies are not specified, retrieves data from all available ones.

	Parameters:

	names (list of str, optional) – The names of the assemblies to retrieve data for.

	Returns:

	
	A dictionary of the form {assembly_name, : assembly_data}, where the values
	are the dictionaries of assembly data as described in get_assembly().

	Return type:

	dict

Examples

>>> assemblies = get_assemblies(names=['GRCh37.p13'])
>>> assy = assemblies['GRCh37.p13']

>>> assemblies = get_assemblies()
>>> 'GRCh38.p2' in assemblies
True

	
bioutils.assemblies.get_assembly(name)

	Retreives the assembly data for a given assembly.

	Parameters:

	name (str) – The name of the assembly to retrieve data for.

	Returns:

	A dictionary of the assembly data. See examples for details.

	Return type:

	dict

Examples

>>> assy = get_assembly('GRCh37.p13')

>>> assy['name']
'GRCh37.p13'

>>> assy['description']
'Genome Reference Consortium Human Build 37 patch release 13 (GRCh37.p13)'

>>> assy['refseq_ac']
'GCF_000001405.25'

>>> assy['genbank_ac']
'GCA_000001405.14'

>>> len(assy['sequences'])
297

>>> import pprint
>>> pprint.pprint(assy['sequences'][0])
{'aliases': ['chr1'],
'assembly_unit': 'Primary Assembly',
'genbank_ac': 'CM000663.1',
'length': 249250621,
'name': '1',
'refseq_ac': 'NC_000001.10',
'relationship': '=',
'sequence_role': 'assembled-molecule'}

	
bioutils.assemblies.get_assembly_names()

	Retrieves available assemblies from the _data/assemblies directory.

	Returns:

	The names of the available assemblies.

	Return type:

	list of str

Examples

>>> assy_names = get_assembly_names()

>>> 'GRCh37.p13' in assy_names
True

	
bioutils.assemblies.make_ac_name_map(assy_name, primary_only=False)

	Creates a map from accessions to sequence names for a given assembly.

	Parameters:

	
	assy_name (str) – The name of the assembly to make a map for.

	primary_only (bool, optional) – Whether to include only primary sequences.
Defaults to False.

	Returns:

	
	A dictionary of the form {accesssion : sequence_name} for accessions in the given assembly,
	where accession and sequence_name are strings.

	Return type:

	dict

Examples

>>> grch38p5_ac_name_map = make_ac_name_map('GRCh38.p5')
>>> grch38p5_ac_name_map['NC_000001.11']
'1'

	
bioutils.assemblies.make_name_ac_map(assy_name, primary_only=False)

	Creates a map from sequence names to accessions for a given assembly.

	Parameters:

	
	assy_name (str) – The name of the assembly to make a map for.

	primary_only (bool, optional) – Whether to include only primary sequences.
Defaults to False.

	Returns:

	
	A dictionary of the form {sequence_name : accession} for sequences in the given assembly,
	Where sequence_name and accession are both strings.

	Return type:

	dict

Examples

>>> grch38p5_name_ac_map = make_name_ac_map('GRCh38.p5')
>>> grch38p5_name_ac_map['1']
'NC_000001.11'

bioutils.coordinates module

Provides utilities for interconverting between coordinate systems
especially as used by the hgvs code. The three systems are:

 : A : C : G : T : A : C :
human/hgvs h :-3 :-2 :-1 : 1 : 2 : 3 :
continuous c :-2 :-1 : 0 : 1 : 2 : 3 :
interbase i -3 -2 -1 0 1 2 3

Human/hgvs coordinates are the native coordinates used by the HGVS
recommendations. The coordinates are 1-based, inclusive, and refer to
the nucleotides; there is no 0.

Continuous coordinates are similar to hgvs coordinates, but adds 1 to
all negative values so that there is no discontinuity between -1 and 1
(as there is with HGVS).

Interbase coordinates refer to the zero-width junctions between
nucleotides. The main advantage of interbase coordinates is that
there are no corner cases in the specification of intervals used for
insertions and deletions as there is with numbering systems that refer
to nucleotides themselves. Numerically, interbase intervals are
0-based, left-closed, and right-open. Beacuse referring to a single
interbase coordinate is not particularly meaningful, interbase
coordinates are always passed as start,end pairs.

Because it’s easy to confuse these coordinates in code, _h, _c, and _i
suffixes are often used to clarify variables.

For code clarity, this module provides functions that interconvert
intervals specified in each of the coordinate systems.

	
bioutils.coordinates.strand_int_to_pm(i)

	Converts 1 and -1 to ‘+’ and ‘-’ respectively.

	Parameters:

	i (int) –

	Returns:

	‘+’ if i == 1, ‘-’ if i == -1, otherwise None.

	Return type:

	str

Examples

>>> strand_int_to_pm(1)
'+'
>>> strand_int_to_pm(-1)
'-'
>>> strand_int_to_pm(42)

	
bioutils.coordinates.strand_pm(i)

	Converts 1 and -1 to ‘+’ and ‘-’ respectively.

	Parameters:

	i (int) –

	Returns:

	‘+’ if i == 1, ‘-’ if i == -1, otherwise None.

	Return type:

	str

Examples

>>> strand_int_to_pm(1)
'+'
>>> strand_int_to_pm(-1)
'-'
>>> strand_int_to_pm(42)

	
bioutils.coordinates.strand_pm_to_int(s)

	Converts ‘+’ and ‘-’ to 1 and -1, respectively.

	Parameters:

	s (string) –

	Returns:

	1 if s == ‘+’, -1 if s == ‘-’, otherwise None.

	Return type:

	int

Examples

>>> strand_pm_to_int('+')
1
>>> strand_pm_to_int('-')
-1
>>> strand_pm_to_int('arglefargle')

bioutils.cytobands module

./sbin/ucsc-cytoband-to-json cytoband-hg38.txt.gz | gzip -c >bioutils/_data/cytobands/ucsc-hg38.json.gz

	
bioutils.cytobands.get_cytoband_map(name)

	Retrives a cytoband by name.

	Parameters:

	name (str) – The name of the cytoband to retrieve.

	Returns:

	A dictionary of the cytoband data.

	Return type:

	dict

Examples

>>> map = get_cytoband_map("ucsc-hg38")
>>> map["1"]["p32.2"]
[55600000, 58500000, 'gpos50']

	
bioutils.cytobands.get_cytoband_maps(names=[])

	Retrieves data from multiple cytobands.

If cytobands are not specified, retrieves data from all available ones.

	Parameters:

	names (list of str, optional) – The names of cytobands to retrieve data for.

	Returns:

	A dictionary of the form {cytoband_name, cytoband_data}.

	Return type:

	dict

Examples

>>> maps = get_cytoband_maps()
>>> maps["ucsc-hg38"]["1"]["p32.2"]
[55600000, 58500000, 'gpos50']
>>> maps["ucsc-hg19"]["1"]["p32.2"]
[56100000, 59000000, 'gpos50']

	
bioutils.cytobands.get_cytoband_names()

	Retrieves available cytobands from the _data/cytobands directory.

	Returns:

	The names of the available cytobands.

	Return type:

	list of str

Examples

>>> sorted(get_cytoband_names())
['ucsc-hg19', 'ucsc-hg38']

bioutils.digest module

	
class bioutils.digest.Digest

	Bases: bytes

Represents a sliceable binary digest, with support for encoding and
decoding using printable characters.

	Supported encoding and decodings are::
	
	base64

	base64url

	hex (aka base16)

The Base64 specification
(https://tools.ietf.org/html/rfc4648#page-7) defines base64 and a
URL-safe variant called base64url.

“Stringified” Digest objects use URL-safe base64 encodings.

>>> import hashlib

>>> b = hashlib.sha512().digest()
>>> len(b)
64

>>> d = Digest(b) # creation
>>> str(d) # returns base64url
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXcg_SpIdNs6c5H0NE8XYXysP-DGNKHfuwvY7kxvUdBeoGlODJ6-SfaPg=='

>>> d24 = d[:24] # slice binary digest at first 24 bytes
>>> str(d24)
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'

encoding

>>> d.as_base64url()
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXcg_SpIdNs6c5H0NE8XYXysP-DGNKHfuwvY7kxvUdBeoGlODJ6-SfaPg=='
>>> d.as_hex()
'cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e'

decoding

>>> d == Digest.from_base64(d.as_base64())
True
>>> d == Digest.from_base64url(d.as_base64url())
True
>>> d == Digest.from_hex(d.as_hex())
True

	
as_base64()

	Returns Digest as a base64-encoded string.

	Returns:

	base64 encoding of Digest.

	Return type:

	str

	
as_base64url()

	Returns Digest as URL-safe, base64-encoded string.

	Returns:

	URL-safe base64 encoding of Digest.

	Return type:

	str

	
as_base64us()

	Returns Digest as URL-safe, base64-encoded string.

	Returns:

	URL-safe base64 encoding of Digest.

	Return type:

	str

	
as_hex()

	Returns Digest as hex string.

	Returns:

	A hex-encoding of Digest.

	Return type:

	str

	
static from_base64(s)

	Returns Digest object initialized from a base64-encoded string.

	Parameters:

	s (str) – A base64-encoded digest string.

	Returns:

	A Digest object initialized from s.

	Return type:

	Digest

	
static from_base64url(s)

	Returns Digest object initialized from a base64url string.

	Parameters:

	s (str) – A base64url-encoded digest string.

	Returns:

	A Digest object initialized from s.

	Return type:

	Digest

	
static from_base64us(s)

	Returns Digest object initialized from a base64url string.

	Parameters:

	s (str) – A base64url-encoded digest string.

	Returns:

	A Digest object initialized from s.

	Return type:

	Digest

	
static from_hex(s)

	returns Digest object initialized from hex string.

	Parameters:

	s (str) – A hex-encoded digest string.

	Returns:

	A Digest object initialized from s.

	Return type:

	Digest

bioutils.digests module

	
bioutils.digests.seq_md5(seq, normalize=True)

	Converts sequence to unicode md5 hex digest.

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	Unicode md5 hex digest representation of sequence.

	Return type:

	str

Examples

>>> seq_md5('')
'd41d8cd98f00b204e9800998ecf8427e'

>>> seq_md5('ACGT')
'f1f8f4bf413b16ad135722aa4591043e'

>>> seq_md5('ACGT*')
'f1f8f4bf413b16ad135722aa4591043e'

>>> seq_md5(' A C G T ')
'f1f8f4bf413b16ad135722aa4591043e'

>>> seq_md5('acgt')
'f1f8f4bf413b16ad135722aa4591043e'

>>> seq_md5('acgt', normalize=False)
'db516c3913e179338b162b2476d1c23f'

	
bioutils.digests.seq_seguid(seq, normalize=True)

	Converts sequence to seguid.

This seguid is compatible with BioPython’s seguid.

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	seguid representation of sequence.

	Return type:

	str

Examples

>>> seq_seguid('')
'2jmj7l5rSw0yVb/vlWAYkK/YBwk'

>>> seq_seguid('ACGT')
'IQiZThf2zKn/I1KtqStlEdsHYDQ'

>>> seq_seguid('acgt')
'IQiZThf2zKn/I1KtqStlEdsHYDQ'

>>> seq_seguid('acgt', normalize=False)
'lII0AoG1/I8qKY271rgv5CFZtsU'

	
bioutils.digests.seq_seqhash(seq, normalize=True)

	Converts sequence to 24-byte Truncated Digest.

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	24-byte Truncated Digest representation of sequence.

	Return type:

	str

Examples

>>> seq_seqhash("")
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'

>>> seq_seqhash("ACGT")
'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'

>>> seq_seqhash("acgt")
'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'

>>> seq_seqhash("acgt", normalize=False)
'eFwawHHdibaZBDcs9kW3gm31h1NNJcQe'

	
bioutils.digests.seq_sha1(seq, normalize=True)

	Converts sequence to unicode sha1 hexdigest.

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks before encoding.
Defaults to True.

	Returns:

	Unicode sha1 hexdigest representation of sequence.

	Return type:

	str

Examples

>>> seq_sha1('')
'da39a3ee5e6b4b0d3255bfef95601890afd80709'

>>> seq_sha1('ACGT')
'2108994e17f6cca9ff2352ada92b6511db076034'

>>> seq_sha1('acgt')
'2108994e17f6cca9ff2352ada92b6511db076034'

>>> seq_sha1('acgt', normalize=False)
'9482340281b5fc8f2a298dbbd6b82fe42159b6c5'

	
bioutils.digests.seq_sha512(seq, normalize=True)

	Converts sequence to unicode sha512 hexdigest.

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	Unicode sha512 hexdigest representation of sequence.

	Return type:

	str

Examples

>>> seq_sha512('')
'cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e'

>>> seq_sha512('ACGT')
'68a178f7c740c5c240aa67ba41843b119d3bf9f8b0f0ac36cf701d26672964efbd536d197f51ce634fc70634d1eefe575bec34c83247abc52010f6e2bbdb8253'

>>> seq_sha512('acgt')
'68a178f7c740c5c240aa67ba41843b119d3bf9f8b0f0ac36cf701d26672964efbd536d197f51ce634fc70634d1eefe575bec34c83247abc52010f6e2bbdb8253'

>>> seq_sha512('acgt', normalize=False)
'785c1ac071dd89b69904372cf645b7826df587534d25c41edb2862e54fb2940d697218f2883d2bf1a11cdaee658c7f7ab945a1cfd08eb26cbce57ee88790250a'

	
bioutils.digests.seq_vmc_id(seq, normalize=True)

	Converts sequence to VMC id.

See https://github.com/ga4gh/vmc

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	VMC id representation of sequence.

	Return type:

	str

Examples

>>> seq_vmc_id("")
'VMC:GS_z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'

>>> seq_vmc_id("ACGT")
'VMC:GS_aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'

>>> seq_vmc_id("acgt")
'VMC:GS_aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'

>>> seq_vmc_id("acgt", normalize=False)
'VMC:GS_eFwawHHdibaZBDcs9kW3gm31h1NNJcQe'

	
bioutils.digests.seq_vmc_identifier(seq, normalize=True)

	Converts sequence to VMC identifier (record).

See https://github.com/ga4gh/vmc

	Parameters:

	
	seq (str) – A sequence.

	normalize (bool, optional) – Whether to normalize the sequence before conversion,
i.e. to ensure representation as uppercase letters without whitespace or asterisks.
Defaults to True.

	Returns:

	VMC identifier (record) representation of sequnce.

	Return type:

	str

Examples

>>> seq_vmc_identifier("") == {'namespace': 'VMC', 'accession': 'GS_z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'}
True

>>> seq_vmc_identifier("ACGT") == {'namespace': 'VMC', 'accession': 'GS_aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'}
True

>>> seq_vmc_identifier("acgt") == {'namespace': 'VMC', 'accession': 'GS_aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2'}
True

>>> seq_vmc_identifier("acgt", normalize=False) == {'namespace': 'VMC', 'accession': 'GS_eFwawHHdibaZBDcs9kW3gm31h1NNJcQe'}
True

bioutils.exceptions module

	
exception bioutils.exceptions.BioutilsError

	Bases: Exception

Root exception for all bioutils exceptions

bioutils.normalize module

Provides functionality for normalizing alleles, ensuring comparable representations.

	
class bioutils.normalize.NormalizationMode(value)

	Bases: Enum

Enum passed to normalize to select the normalization mode.

	
EXPAND

	Normalize alleles to maximal extent both left and right.

	
LEFTSHUFFLE

	Normalize alleles to maximal extent left.

	
RIGHTSHUFFLE

	Normalize alleles to maximal extent right.

	
TRIMONLY

	Only trim the common prefix and suffix of alleles. Deprecated – use mode=None with trim=True instead.

	
VCF

	Normalize with VCF.

	
EXPAND = 1

	

	
LEFTSHUFFLE = 2

	

	
RIGHTSHUFFLE = 3

	

	
TRIMONLY = 4

	

	
VCF = 5

	

	
bioutils.normalize.normalize(sequence, interval, alleles, mode: Optional[NormalizationMode] = NormalizationMode.EXPAND, bounds=None, anchor_length=0, trim: bool = True)

	Normalizes the alleles that co-occur on sequence at interval, ensuring comparable representations.

Normalization performs three operations:
- trimming
- shuffling
- anchoring

	Parameters:

	
	sequence (str or iterable) – The reference sequence; must support indexing and __getitem__.

	interval (2-tuple of int) – The location of alleles in the reference sequence as (start, end).
Interbase coordinates.

	alleles (iterable of str) – The sequences to be normalized. The first element
corresponds to the reference sequence being unchanged and must be None.

	bounds (2-tuple of int, optional) – Maximal extent of normalization left and right.
Must be provided if sequence doesn’t support __len__. Defaults to (0, len(sequence)).

	mode (NormalizationMode Enum or string, optional) – A NormalizationMode Enum or the corresponding string.
Defaults to EXPAND. Set to None to skip shuffling. Does not affect trimming or anchoring.

	anchor (int, optional) – number of flanking residues left and right. Defaults to 0.

	trim (bool) – indicates whether to trim the common prefix and suffix of alleles. Defaults to True.
Set to False to skip trimming. Does not affect shuffling or anchoring.

	Returns:

	(new_interval, [new_alleles])

	Return type:

	tuple

	Raises:

	
	ValueError – If normalization mode is VCF and anchor_length is nonzero.

	ValueError – If the interval start is greater than the end.

	ValueError – If the first (reference) allele is not None.

	ValueError – If there are not at least two distinct alleles.

Examples

>>> sequence = "CCCCCCCCACACACACACTAGCAGCAGCA"
>>> normalize(sequence, interval=(22,25), alleles=(None, "GC", "AGCAC"), mode='TRIMONLY')
((22, 24), ('AG', 'G', 'AGCA'))

>>> normalize(sequence, interval=(22, 22), alleles=(None, 'AGC'), mode='RIGHTSHUFFLE')
((29, 29), ('', 'GCA'))

>>> normalize(sequence, interval=(22, 22), alleles=(None, 'AGC'), mode='EXPAND')
((19, 29), ('AGCAGCAGCA', 'AGCAGCAGCAGCA'))

	
bioutils.normalize.roll_left(sequence, alleles, ref_pos, bound)

	Determines common distance all alleles can be rolled (circularly permuted) left
within the reference sequence without altering it.

	Parameters:

	
	sequence (str) – The reference sequence.

	alleles (list of str) – The sequences to be normalized.

	ref_pos (int) – The beginning index for rolling.

	bound (int) – The lower bound index in the reference sequence for normalization, hence also for rolling.

	Returns:

	The distance that the alleles can be rolled.

	Return type:

	int

	
bioutils.normalize.roll_right(sequence, alleles, ref_pos, bound)

	Determines common distance all alleles can be rolled (circularly permuted) right
within the reference sequence without altering it.

	Parameters:

	
	sequence (str) – The reference sequence.

	alleles (list of str) – The sequences to be normalized.

	ref_pos (int) – The start index for rolling.

	bound (int) – The upper bound index in the reference sequence for normalization, hence also for rolling.

	Returns:

	The distance that the alleles can be rolled

	Return type:

	int

	
bioutils.normalize.trim_left(alleles)

	Removes common prefix of given alleles.

	Parameters:

	alleles (list of str) – A list of alleles.

	Returns:

	(number_trimmed, [new_alleles]).

	Return type:

	tuple

Examples

>>> trim_left(["","AA"])
(0, ['', 'AA'])

>>> trim_left(["A","AA"])
(1, ['', 'A'])

>>> trim_left(["AT","AA"])
(1, ['T', 'A'])

>>> trim_left(["AA","AA"])
(2, ['', ''])

>>> trim_left(["CAG","CG"])
(1, ['AG', 'G'])

	
bioutils.normalize.trim_right(alleles)

	Removes common suffix of given alleles.

	Parameters:

	alleles (list of str) – A list of alleles.

	Returns:

	(number_trimmed, [new_alleles]).

	Return type:

	tuple

Examples

>>> trim_right(["","AA"])
(0, ['', 'AA'])

>>> trim_right(["A","AA"])
(1, ['', 'A'])

>>> trim_right(["AT","AA"])
(0, ['AT', 'AA'])

>>> trim_right(["AA","AA"])
(2, ['', ''])

>>> trim_right(["CAG","CG"])
(1, ['CA', 'C'])

bioutils.seqfetcher module

Provides sequence fetching from NCBI and Ensembl.

	
bioutils.seqfetcher.fetch_seq(ac, start_i=None, end_i=None)

	Fetches sequences and subsequences from NCBI eutils and Ensembl REST interfaces.

	Parameters:

	
	ac (str) – The accession of the sequence to fetch.

	start_i (int, optional) – The start index (interbase coordinates) of the subsequence to fetch. Defaults to None.
It is recommended to retrieve a subsequence by providing an index here, rather than by
Python slicing the whole sequence.

	end_i (int, optional) – The end index (interbase coordinates) of the subsequence to fetch. Defaults to None.
It is recommended to retrieve a subsequence by providing an index here, rather than by
Python slicing the whole sequence.

	Returns:

	The requested sequence.

	Return type:

	str

	Raises:

	
	RuntimeError – If the syntax doesn’t match that of any of the databases.

	RuntimeError – If the request to the database fails.

Examples

>>> len(fetch_seq('NP_056374.2'))
1596

>>> fetch_seq('NP_056374.2',0,10) # This!
'MESRETLSSS'

>>> fetch_seq('NP_056374.2')[0:10] # Not this!
'MESRETLSSS'

Providing intervals is especially important for large sequences:

>>> fetch_seq('NC_000001.10',2000000,2000030)
'ATCACACGTGCAGGAACCCTTTTCCAAAGG'

This call will pull back 30 bases plus overhead; without the
interval, one would receive 250MB of chr1 plus overhead!

Essentially any RefSeq, Genbank, BIC, or Ensembl sequence may be
fetched.

>>> fetch_seq('NM_9.9')
Traceback (most recent call last):
...
RuntimeError: No sequence available for NM_9.9

>>> fetch_seq('QQ01234')
Traceback (most recent call last):
...
RuntimeError: No sequence fetcher for QQ01234

bioutils.sequences module

Simple functions and lookup tables for nucleic acid and amino acid sequences.

	
class bioutils.sequences.StrEnum(value)

	Bases: str, Enum

utility class

	
class bioutils.sequences.TranslationTable(value)

	Bases: StrEnum

An enum that controls switching between standard and selenocysteine translation tables.

	
selenocysteine = 'sec'

	

	
standard = 'standard'

	

	
bioutils.sequences.aa1_to_aa3(seq)

	Converts string of 1-letter amino acids to 3-letter amino acids.

Should only be used if the format of the sequence is known; otherwise use aa_to_aa3().

	Parameters:

	seq (str) – An amino acid sequence as 1-letter amino acids.

	Returns:

	The sequence as 3-letter amino acids.

	Return type:

	str

	Raises:

	KeyError – If the sequence is not of 1-letter amino acids.

Examples

>>> aa1_to_aa3("CATSARELAME")
'CysAlaThrSerAlaArgGluLeuAlaMetGlu'

>>> aa1_to_aa3(None)

	
bioutils.sequences.aa3_to_aa1(seq)

	Converts string of 3-letter amino acids to 1-letter amino acids.

Should only be used if the format of the sequence is known; otherwise use aa_to_aa1().

	Parameters:

	seq (str) – An amino acid sequence as 3-letter amino acids.

	Returns:

	The sequence as 1-letter amino acids.

	Return type:

	str

	Raises:

	KeyError – If the sequence is not of 3-letter amino acids.

Examples

>>> aa3_to_aa1("CysAlaThrSerAlaArgGluLeuAlaMetGlu")
'CATSARELAME'

>>> aa3_to_aa1(None)

	
bioutils.sequences.aa_to_aa1(seq)

	Coerces string of 1- or 3-letter amino acids to 1-letter representation.

	Parameters:

	seq (str) – An amino acid sequence.

	Returns:

	The sequence as one of 1-letter amino acids.

	Return type:

	str

Examples

>>> aa_to_aa1("CATSARELAME")
'CATSARELAME'

>>> aa_to_aa1("CysAlaThrSerAlaArgGluLeuAlaMetGlu")
'CATSARELAME'

>>> aa_to_aa1(None)

	
bioutils.sequences.aa_to_aa3(seq)

	Coerces string of 1- or 3-letter amino acids to 3-letter representation.

	Parameters:

	seq (str) – An amino acid sequence.

	Returns:

	The sequence as one of 3-letter amino acids.

	Return type:

	str

Examples

>>> aa_to_aa3("CATSARELAME")
'CysAlaThrSerAlaArgGluLeuAlaMetGlu'

>>> aa_to_aa3("CysAlaThrSerAlaArgGluLeuAlaMetGlu")
'CysAlaThrSerAlaArgGluLeuAlaMetGlu'

>>> aa_to_aa3(None)

	
bioutils.sequences.complement(seq)

	Retrieves the complement of a sequence.

	Parameters:

	seq (str) – A nucleotide sequence.

	Returns:

	The complement of the sequence.

	Return type:

	str

Examples

>>> complement("ATCG")
'TAGC'

>>> complement(None)

	
bioutils.sequences.elide_sequence(s, flank=5, elision='...')

	Trims the middle of the sequence, leaving the right and left flanks.

	Parameters:

	
	s (str) – A sequence.

	flank (int, optional) – The length of each flank. Defaults to five.

	elision (str, optional) – The symbol used to represent the part trimmed. Defaults to ‘…’.

	Returns – str: The sequence with the middle replaced by elision.

Examples

>>> elide_sequence("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
'ABCDE...VWXYZ'

>>> elide_sequence("ABCDEFGHIJKLMNOPQRSTUVWXYZ", flank=3)
'ABC...XYZ'

>>> elide_sequence("ABCDEFGHIJKLMNOPQRSTUVWXYZ", elision="..")
'ABCDE..VWXYZ'

>>> elide_sequence("ABCDEFGHIJKLMNOPQRSTUVWXYZ", flank=12)
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> elide_sequence("ABCDEFGHIJKLMNOPQRSTUVWXYZ", flank=12, elision=".")
'ABCDEFGHIJKL.OPQRSTUVWXYZ'

	
bioutils.sequences.looks_like_aa3_p(seq)

	Indicates whether a string looks like a 3-letter AA string.

	Parameters:

	seq (str) – A sequence.

	Returns:

	Whether the string is of the format of a 3-letter AA string.

	Return type:

	bool

	
bioutils.sequences.normalize_sequence(seq)

	Converts sequence to normalized representation for hashing.

Essentially, removes whitespace and asterisks, and uppercases the string.

	Parameters:

	seq (str) – The sequence to be normalized.

	Returns:

	The sequence as a string of uppercase letters.

	Return type:

	str

	Raises:

	RuntimeError – If the sequence contains non-alphabetic characters (besides ‘*’).

Examples

>>> normalize_sequence("ACGT")
'ACGT'

>>> normalize_sequence(" A C G T * ")
'ACGT'

>>> normalize_sequence("ACGT1")
Traceback (most recent call last):
...
RuntimeError: Normalized sequence contains non-alphabetic characters

	
bioutils.sequences.replace_t_to_u(seq)

	Replaces the T’s in a sequence with U’s.

	Parameters:

	seq (str) – A nucleotide sequence.

	Returns:

	The sequence with the T’s replaced by U’s.

	Return type:

	str

Examples

>>> replace_t_to_u("ACGT")
'ACGU'

>>> replace_t_to_u(None)

	
bioutils.sequences.replace_u_to_t(seq)

	Replaces the U’s in a sequence with T’s.

	Parameters:

	seq (str) – A nucleotide sequence.

	Returns:

	The sequence with the U’s replaced by T’s.

	Return type:

	str

Examples

>>> replace_u_to_t("ACGU")
'ACGT'

>>> replace_u_to_t(None)

	
bioutils.sequences.reverse_complement(seq)

	Converts a sequence to its reverse complement.

	Parameters:

	seq (str) – A nucleotide sequence.

	Returns:

	The reverse complement of the sequence.

	Return type:

	str

Examples

>>> reverse_complement("ATCG")
'CGAT'

>>> reverse_complement(None)

	
bioutils.sequences.translate_cds(seq, full_codons=True, ter_symbol='*', translation_table=TranslationTable.standard)

	Translates a DNA or RNA sequence into a single-letter amino acid sequence.

	Parameters:

	
	seq (str) – A nucleotide sequence.

	full_codons (bool, optional) – If True, forces sequence to have length
that is a multiple of 3 and raises an error otherwise.
If False, ter_symbol will be added as the last amino acid.
This corresponds to biopython’s behavior of padding the last codon with N``s.
Defaults to ``True.

	ter_symbol (str, optional) – Placeholder for the last amino acid if
sequence length is not divisible by three and full_codons is False.
Defaults to '*'

	translation_table (TranslationTable, optional) – One of the options from the TranslationTable. It indicates
which codon to amino acid translation table to use.
By default we will use the standard translation table for humans. To enable translation for selenoproteins,
the TranslationTable.selenocysteine table can get used

	Returns:

	The corresponding single letter amino acid sequence.

	Return type:

	str

	Raises:

	
	ValueError – If full_codons and the sequence is not a multiple of three.

	ValueError – If a codon is undefined in the table.

Examples

>>> translate_cds("ATGCGA")
'MR'

>>> translate_cds("AUGCGA")
'MR'

>>> translate_cds(None)

>>> translate_cds("")
''

>>> translate_cds("AUGCG")
Traceback (most recent call last):
...
ValueError: Sequence length must be a multiple of three

>>> translate_cds("AUGCG", full_codons=False)
'M*'

>>> translate_cds("ATGTAN")
'MX'

>>> translate_cds("CCN")
'P'

>>> translate_cds("TRA")
'*'

>>> translate_cds("TTNTA", full_codons=False)
'X*'

>>> translate_cds("CTB")
'L'

>>> translate_cds("AGM")
'X'

>>> translate_cds("GAS")
'X'

>>> translate_cds("CUN")
'L'

>>> translate_cds("AUGCGQ")
Traceback (most recent call last):
...
ValueError: Codon CGQ at position 4..6 is undefined in codon table

bioutils.vmc_digest module

	
bioutils.vmc_digest.vmc_digest(data, digest_size=24)

	Returns the VMC Digest as a Digest object, which has both bytes and
string (URL-safe, Base 64) representations.

>>> d = vmc_digest("")

>>> str(d)
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'

>>> len(d), len(str(d))
(24, 32)

>>> str(vmc_digest("", 24))
'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc'

>>> vmc_digest("", 17)
Traceback (most recent call last):
...
ValueError: digest_size must be a multiple of 3

>>> vmc_digest("", 66)
Traceback (most recent call last):
...
ValueError: digest_size must be between 0 and 63 (bytes)

SHA-512 is 2x faster than SHA1 on modern 64-bit platforms.
However, few appliations require 512 bits (64 bytes) of keyspace.
That larger size translates into proportionally larger key size
requirements, with attendant performance implications. By
truncating the SHA-512 digest [1], users may obtain a tunable
level of collision avoidance.

The string returned by this function is Base 64 encoded with
URL-safe characters [2], making it suitable for use with URLs or
filesystem paths. Base 64 encoding results in an output string
that is 4/3 the size of the input. If the length of the input
string is not divisible by 3, the output is right-padded with
equal signs (=), which have no information content. Therefore,
this function requires that digest_size is evenly divisible by 3.
(The resulting vmc_digest will be 4/3*digest_size bytes.)

According to [3], the probability of a collision using b bits with
m messages (sequences) is:

P(b, m) = m^2 / 2^(b+1).

Note that the collision probability depends on the number of
messages, but not their size. Solving for the number of messages:

m(b, P) = sqrt(P * 2^(b+1))

Solving for the number of bits:

b(m, P) = log2(m^2/P) - 1

For various values of m and P, the number of bytes required
according to b(m,P) rounded to next multiple of 3 is:

	#m

	P<1e-24

	P<1e-21

	P<1e-18

	P<1e-15

	P<1e-12

	P<1e-09

	1e+06

	15

	12

	12

	9

	9

	9

	1e+09

	15

	15

	12

	12

	9

	9

	1e+12

	15

	15

	15

	12

	12

	9

	1e+15

	18

	15

	15

	15

	12

	12

	1e+18

	18

	18

	15

	15

	15

	12

	1e+21

	21

	18

	18

	15

	15

	15

	1e+24

	21

	21

	18

	18

	15

	15

For example, given 1e+18 expected messages and a desired collision
probability < 1e-15, we use digest_size = 15 (bytes).

References

	[1] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

	[2] https://tools.ietf.org/html/rfc3548#section-4

	[3] http://stackoverflow.com/a/4014407/342839

	[4] http://stackoverflow.com/a/22029380/342839

	[5] http://preshing.com/20110504/hash-collision-probabilities/

	[6] https://en.wikipedia.org/wiki/Birthday_problem

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2019 bioutils Contributors

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Authors

Reece Hart <reecehart@gmail.com>
Alan Rubin <alan.rubin@wehi.edu.au>
Andreas Prlic <andreas.prlic@invitae.com>
Timothy Laurent <timothyjlaurent@gmail.com>
Ben Robinson <ben.robinson@invitae.com>
Lucas Wiman <lucas.wiman@gmail.com>

Change Log

	0.4 Series
	0.4.4 (2019-05-13)

	0.4.3 (2019-04-05)

	0.4.2 (2019-02-21)

	0.4.1 (2019-02-21)

	0.4.0 (2018-10-22)

	0.5 Series
	0.5.7 (2022-06-13)

	0.5.6 (2022-06-09)

	0.5.5 (2021-05-03)

	0.5.4 (2021-05-02)

	0.5.3 (2021-04-14)

	0.5.2 (2019-11-06)

	0.5.1 (2019-07-31)

	0.5.0 (2019-07-22)

0.4 Series

	0.4.4 (2019-05-13)

	0.4.3 (2019-04-05)

	0.4.2 (2019-02-21)

	0.4.1 (2019-02-21)

	0.4.0 (2018-10-22)

0.4.4 (2019-05-13)

Changes since 0.4.3 (2019-04-05).

Special Attention

	This is the last release in the 0.4 series.

Future biocommons packages will be tested and supported only on Python
>= 3.6 (https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6)

0.4.3 (2019-04-05)

Changes since 0.4.2 (2019-02-21).

New Features

	Fixes #16 [https://github.com/biocommons/bioutils/issues/16/]: Retry seqfetcher when rate limit exceeded [92d7210 [https://github.com/biocommons/bioutils/commit/92d7210]]

0.4.2 (2019-02-21)

Changes since 0.4.1 (2019-02-21).

Internal and Developer Changes

	reraise all requests exceptions (not just HTTPError) as RuntimeError [daece64 [https://github.com/biocommons/bioutils/commit/daece64]]

0.4.1 (2019-02-21)

Changes since 0.4.0 (2018-11-11).

Other Changes

	expose underlying exception on http failure [9e56110 [https://github.com/biocommons/bioutils/commit/9e56110]]

Internal and Developer Changes

	updated badges [8f91ed1 [https://github.com/biocommons/bioutils/commit/8f91ed1]]

	added LICENSE [b3d6d64 [https://github.com/biocommons/bioutils/commit/b3d6d64]]

	added missing contributors definition [97f78b3 [https://github.com/biocommons/bioutils/commit/97f78b3]]

	updated badge list [de2bf15 [https://github.com/biocommons/bioutils/commit/de2bf15]]

	sync’d project files with eutils [3102695 [https://github.com/biocommons/bioutils/commit/3102695]]

0.4.0 (2018-10-22)

Changes since 0.3.3 (2017-09-03).

Important Notice

Support for Python <3.6 will be dropped on 2019-03-31. See
https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6

New Features

	Closes #10 [https://github.com/biocommons/bioutils/issues/10/]: Support NCBI API keys (and NCBI_API_KEY env variable) [8739c98 [https://github.com/biocommons/bioutils/commit/8739c98]] (@timothyjlaurent)

	Closes #12 [https://github.com/biocommons/bioutils/issues/12/]: add infer_namespaces and infer_namespace functions [2a53c7f [https://github.com/biocommons/bioutils/commit/2a53c7f]]

	Dropped biopython dependency [0382b86 [https://github.com/biocommons/bioutils/commit/0382b86]] (@afrubin)

	Added bioutils.sequences.py:elide_sequence() function [018a762 [https://github.com/biocommons/bioutils/commit/018a762]]

	Added GRCh38.p12 [3876f36 [https://github.com/biocommons/bioutils/commit/3876f36]]

0.5 Series

	0.5.7 (2022-06-13)

	0.5.6 (2022-06-09)

	0.5.5 (2021-05-03)

	0.5.4 (2021-05-02)

	0.5.3 (2021-04-14)

	0.5.2 (2019-11-06)

	0.5.1 (2019-07-31)

	0.5.0 (2019-07-22)

0.5.7 (2022-06-13)

Changes since 0.5.6 (2022-06-09).

New Features

	Enable independent control of trimming and shuffling during normalization [203ef4e [https://github.com/biocommons/bioutils/commit/203ef4e]] (Ryan Gomoto)

0.5.6 (2022-06-09)

Changes since 0.5.5 (2021-05-05).

Bug Fixes

	fix #36 [https://github.com/biocommons/bioutils/issues/36/] by adding a new translation table … (#37 [https://github.com/biocommons/bioutils/issues/37/]) [b5d4d0f [https://github.com/biocommons/bioutils/commit/b5d4d0f]] (Andreas Prlic)

	Fix test warnings and a new failure from #36 [https://github.com/biocommons/bioutils/issues/36/] [22b5556 [https://github.com/biocommons/bioutils/commit/22b5556]] (Reece Hart)

New Features

	Handle Ensembl transcript versions [b3eaf83 [https://github.com/biocommons/bioutils/commit/b3eaf83]] (Dave Lawrence)

Internal and Developer Changes

	Update Makefile to support newer bioutils conventions [ed6eaf6 [https://github.com/biocommons/bioutils/commit/ed6eaf6]] (Reece Hart)

	Adopt GitHub Actions for testing and deployment [35c6a7f [https://github.com/biocommons/bioutils/commit/35c6a7f]] (Reece Hart)

	Switch to Python 3.10 by default [5895087 [https://github.com/biocommons/bioutils/commit/5895087]] (Reece Hart)

0.5.5 (2021-05-03)

Changes since 0.5.4 (2021-05-02).

Bug Fixes

	Don’t retry sequence fetch with invalid coordinates [94e80cd [https://github.com/biocommons/bioutils/commit/94e80cd]] (pjcoenen)

0.5.4 (2021-05-02)

Changes since 0.5.3 (2021-04-14).

Internal and Developer Changes

	#31 [https://github.com/biocommons/bioutils/issues/31/]: improve support for degenerate codons [ebcec67 [https://github.com/biocommons/bioutils/commit/ebcec67]] (kayleeyuhas)

0.5.3 (2021-04-14)

Changes since 0.5.2 (2019-11-06).

New Features

	#29 [https://github.com/biocommons/bioutils/issues/29/]: Support ambiguity codes in translation [669a653 [https://github.com/biocommons/bioutils/commit/669a653]] (kayleeyuhas)

	added bin/fasta-ga4gh-identifier [63d1078 [https://github.com/biocommons/bioutils/commit/63d1078]] (Reece Hart)

Internal and Developer Changes

	updated Makefile for Python 3.8 [29eecf5 [https://github.com/biocommons/bioutils/commit/29eecf5]] (Reece Hart)

	fix failing test and reformat [7cc5ebb [https://github.com/biocommons/bioutils/commit/7cc5ebb]] (kayleeyuhas)

	improve variable names and use string instead of list [5d7484b [https://github.com/biocommons/bioutils/commit/5d7484b]] (kayleeyuhas)

0.5.2 (2019-11-06)

Changes since 0.5.1 (2019-07-31).

Special Attention

	Thanks to @trentwatt for significant documentation contributions! See

https://bioutils.readthedocs.io/en/master/ for his handiwork.

Other Changes

	Added changelogs for 0.5.0 and 0.5.1, which @reece forgot to include :-(

	#22 [https://github.com/biocommons/bioutils/issues/22/] added function docs for all modules [c0090ed [https://github.com/biocommons/bioutils/commit/c0090ed]] (trentwatt)

	#23 [https://github.com/biocommons/bioutils/issues/23/]: fix setup.cfg description tags (description → long-description) [8945c04 [https://github.com/biocommons/bioutils/commit/8945c04]] (Reece Hart)

0.5.1 (2019-07-31)

Changes since 0.5.0 (2019-07-22).

Internal and Developer Changes

	Closes #26 [https://github.com/biocommons/bioutils/issues/26/]: Fix LICENSE filename typo that prevented wheel builds :-([df2fe4a [https://github.com/biocommons/bioutils/commit/df2fe4a]] (Reece Hart)

0.5.0 (2019-07-22)

Changes since 0.4.4 (2019-05-13).

Special Attention

	All biocommons packages now require Python >= 3.6. See https://github.com/biocommons/org/wiki/Migrating-to-Python-3.6

New Features

	#18 [https://github.com/biocommons/bioutils/issues/18/]: Implemented comprehensive sequence normalization (trim, left, right, expand/voca, vcf) [36785fa [https://github.com/biocommons/bioutils/commit/36785fa]] (Reece Hart)

	#20 [https://github.com/biocommons/bioutils/issues/20/]: implement hex-based digests à la refget [140a20e [https://github.com/biocommons/bioutils/commit/140a20e]] (Reece Hart)

	Add support for cytobands, incl data files from UCSC [0ba4361 [https://github.com/biocommons/bioutils/commit/0ba4361]] (Reece Hart)

	Added accessions.py:coerce_namespace() [e31e592 [https://github.com/biocommons/bioutils/commit/e31e592]] (Reece Hart)

Internal and Developer Changes

	Added pytest-optional-tests; use test alias in Makefile [ba9b993 [https://github.com/biocommons/bioutils/commit/ba9b993]] (Reece Hart)

	Added trinuc normalization tests [cfe3a68 [https://github.com/biocommons/bioutils/commit/cfe3a68]] (Reece Hart)

	Added vcrpy to test requirements [95893f1 [https://github.com/biocommons/bioutils/commit/95893f1]] (Reece Hart)

	Moved source to src/; updated setup.cfg [ff45fb0 [https://github.com/biocommons/bioutils/commit/ff45fb0]] (Reece Hart)

	Removed pip install from tox in favor of deps [8c8f91a [https://github.com/biocommons/bioutils/commit/8c8f91a]] (Reece Hart)

	Renamed doc → docs [1612e5c [https://github.com/biocommons/bioutils/commit/1612e5c]] (Reece Hart)

	Store assemblies as compressed json [ea79e71 [https://github.com/biocommons/bioutils/commit/ea79e71]] (Reece Hart)

	Update tests to use new vcr cassettes on optional tests (much faster!) [2001745 [https://github.com/biocommons/bioutils/commit/2001745]] (Reece Hart)

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bioutils	

 	
 	
 bioutils.accessions	

 	
 	
 bioutils.assemblies	

 	
 	
 bioutils.coordinates	

 	
 	
 bioutils.cytobands	

 	
 	
 bioutils.digest	

 	
 	
 bioutils.digests	

 	
 	
 bioutils.exceptions	

 	
 	
 bioutils.normalize	

 	
 	
 bioutils.seqfetcher	

 	
 	
 bioutils.sequences	

 	
 	
 bioutils.vmc_digest	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	aa1_to_aa3() (in module bioutils.sequences)

 	aa3_to_aa1() (in module bioutils.sequences)

 	aa_to_aa1() (in module bioutils.sequences)

 	aa_to_aa3() (in module bioutils.sequences)

 	
 	as_base64() (bioutils.digest.Digest method)

 	as_base64url() (bioutils.digest.Digest method)

 	as_base64us() (bioutils.digest.Digest method)

 	as_hex() (bioutils.digest.Digest method)

B

 	
 	
 bioutils

 	module

 	
 bioutils.accessions

 	module

 	
 bioutils.assemblies

 	module

 	
 bioutils.coordinates

 	module

 	
 bioutils.cytobands

 	module

 	
 bioutils.digest

 	module

 	
 	
 bioutils.digests

 	module

 	
 bioutils.exceptions

 	module

 	
 bioutils.normalize

 	module

 	
 bioutils.seqfetcher

 	module

 	
 bioutils.sequences

 	module

 	
 bioutils.vmc_digest

 	module

 	BioutilsError

C

 	
 	chr22XY() (in module bioutils.accessions)

 	
 	coerce_namespace() (in module bioutils.accessions)

 	complement() (in module bioutils.sequences)

D

 	
 	Digest (class in bioutils.digest)

E

 	
 	elide_sequence() (in module bioutils.sequences)

 	
 	EXPAND (bioutils.normalize.NormalizationMode attribute), [1]

F

 	
 	fetch_seq() (in module bioutils.seqfetcher)

 	from_base64() (bioutils.digest.Digest static method)

 	
 	from_base64url() (bioutils.digest.Digest static method)

 	from_base64us() (bioutils.digest.Digest static method)

 	from_hex() (bioutils.digest.Digest static method)

G

 	
 	get_assemblies() (in module bioutils.assemblies)

 	get_assembly() (in module bioutils.assemblies)

 	get_assembly_names() (in module bioutils.assemblies)

 	
 	get_cytoband_map() (in module bioutils.cytobands)

 	get_cytoband_maps() (in module bioutils.cytobands)

 	get_cytoband_names() (in module bioutils.cytobands)

I

 	
 	infer_namespace() (in module bioutils.accessions)

 	
 	infer_namespaces() (in module bioutils.accessions)

L

 	
 	LEFTSHUFFLE (bioutils.normalize.NormalizationMode attribute), [1]

 	
 	looks_like_aa3_p() (in module bioutils.sequences)

M

 	
 	make_ac_name_map() (in module bioutils.assemblies)

 	make_name_ac_map() (in module bioutils.assemblies)

 	
 module

 	bioutils

 	bioutils.accessions

 	bioutils.assemblies

 	bioutils.coordinates

 	bioutils.cytobands

 	bioutils.digest

 	bioutils.digests

 	bioutils.exceptions

 	bioutils.normalize

 	bioutils.seqfetcher

 	bioutils.sequences

 	bioutils.vmc_digest

N

 	
 	NormalizationMode (class in bioutils.normalize)

 	
 	normalize() (in module bioutils.normalize)

 	normalize_sequence() (in module bioutils.sequences)

P

 	
 	prepend_chr() (in module bioutils.accessions)

R

 	
 	replace_t_to_u() (in module bioutils.sequences)

 	replace_u_to_t() (in module bioutils.sequences)

 	reverse_complement() (in module bioutils.sequences)

 	
 	RIGHTSHUFFLE (bioutils.normalize.NormalizationMode attribute), [1]

 	roll_left() (in module bioutils.normalize)

 	roll_right() (in module bioutils.normalize)

S

 	
 	selenocysteine (bioutils.sequences.TranslationTable attribute)

 	seq_md5() (in module bioutils.digests)

 	seq_seguid() (in module bioutils.digests)

 	seq_seqhash() (in module bioutils.digests)

 	seq_sha1() (in module bioutils.digests)

 	seq_sha512() (in module bioutils.digests)

 	seq_vmc_id() (in module bioutils.digests)

 	
 	seq_vmc_identifier() (in module bioutils.digests)

 	standard (bioutils.sequences.TranslationTable attribute)

 	strand_int_to_pm() (in module bioutils.coordinates)

 	strand_pm() (in module bioutils.coordinates)

 	strand_pm_to_int() (in module bioutils.coordinates)

 	StrEnum (class in bioutils.sequences)

 	strip_chr() (in module bioutils.accessions)

T

 	
 	translate_cds() (in module bioutils.sequences)

 	TranslationTable (class in bioutils.sequences)

 	
 	trim_left() (in module bioutils.normalize)

 	trim_right() (in module bioutils.normalize)

 	TRIMONLY (bioutils.normalize.NormalizationMode attribute), [1]

V

 	
 	VCF (bioutils.normalize.NormalizationMode attribute), [1]

 	
 	vmc_digest() (in module bioutils.vmc_digest)

bioutils

	bioutils package
	Submodules

	Module contents

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 bioutils – bioinformatics utilities and lookup tables

 		
 Reference

 		
 Submodules

 		
 bioutils.accessions module

 		
 bioutils.assemblies module

 		
 bioutils.coordinates module

 		
 bioutils.cytobands module

 		
 bioutils.digest module

 		
 bioutils.digests module

 		
 bioutils.exceptions module

 		
 bioutils.normalize module

 		
 bioutils.seqfetcher module

 		
 bioutils.sequences module

 		
 bioutils.vmc_digest module

 		
 Module contents

 		
 License

 		
 Authors

 		
 Changelog

 		
 0.4 Series

 		
 0.4.4 (2019-05-13)

 		
 0.4.3 (2019-04-05)

 		
 0.4.2 (2019-02-21)

 		
 0.4.1 (2019-02-21)

 		
 0.4.0 (2018-10-22)

 		
 0.5 Series

 		
 0.5.7 (2022-06-13)

 		
 0.5.6 (2022-06-09)

 		
 0.5.5 (2021-05-03)

 		
 0.5.4 (2021-05-02)

 		
 0.5.3 (2021-04-14)

 		
 0.5.2 (2019-11-06)

 		
 0.5.1 (2019-07-31)

 		
 0.5.0 (2019-07-22)

